In this notebook, we test the traditional Discrete Fourier Transform (DFT) to see if it can identify the oscillatory behaviour from the noisy timeseries.
# Set up local project directory path
from pathlib import Path
from tqdm.notebook import tqdm
import sys
project_src = Path('../src').resolve().as_posix()
sys.path.insert(0, project_src)
# try:
# import lib.config
# except Exception:
# raise Exception("Issue with dynamic import")
# config = lib.config.read_config()
# pwd = Path(config["pwd"])
src = Path('../output')
# Import modules needed for the rest of the notebook
import numpy as np
import pandas as pd
from scipy import fft
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
# Pytorch + GP + Pyro
import torch, gpytorch, pyro
import matplotlib as mpl
from matplotlib import pyplot as plt
import seaborn as sns
sns.set_context('notebook')
sns.set_style('ticks',
{
'axes.grid': True,
'axes.linewidth': '1',
'grid.color': '0.5',
'grid.linestyle': u':',
'legend.frameon': True,
})
xkcd = sns.xkcd_rgb
rc_fonts = {
"font.family": "serif",
"font.size": 15,
"text.usetex": True,
"text.latex.preamble": r"\usepackage{libertine} \usepackage[libertine]{newtxmath}",
}
mpl.rcParams.update(rc_fonts)
# CUDA setup
device = torch.device('cpu')
if torch.cuda.is_available():
device = torch.device('cuda')
if device.type == 'cuda':
print(f"Using {torch.cuda.get_device_name(0)}")
else:
print(f"Using {device}")
Using cpu
p = Path('../output/slope_CGILS_S6_CLD_KDE_PIECEWISE.pq')
df = pd.read_parquet(p)
y = df.slope.to_numpy()
x = np.arange(len(y))
x_full = torch.tensor(x, dtype=torch.double)
y_full = torch.tensor(y, dtype=torch.double)
x_tr = torch.tensor(x[:700], dtype=torch.double)
y_tr = torch.tensor(y[:700], dtype=torch.double)
# Plot
fig, ax = plt.subplots(1, 1, figsize = (12, 6))
ax.plot(x_tr / 60, y_tr, 'o-')
ax.set_xlabel("Time [hr]", fontsize=14)
ax.set_ylabel("Slope $b$", fontsize=14)
ax.tick_params(axis='both', which='major', labelsize=14)

xf = np.fft.rfft(y_tr.numpy())
yf = np.fft.rfftfreq(y_tr.shape[-1])
xx = 1 / yf
yy = np.abs(xf) ** 2 / len(xx)
_m = np.isfinite(xx) & np.isfinite(yy)
xx = xx[_m]
yy = yy[_m]
/tmp/ipykernel_543757/3770278785.py:4: RuntimeWarning: divide by zero encountered in divide
xx = 1 / yf
# Find 95% confidence range
th = np.percentile(yy, 95)
filtered = [x for x in yy if x <= th]
var = np.mean(filtered) * len(yf)
print(var)
0.18145321561966812
# Plot
fig, ax = plt.subplots(1, 1, figsize = (10, 5), dpi=300)
ax.bar(
xx,
yy,
width=4,
edgecolor="none",
label="Power Spectra"
)
plt.axhline(
y=var,
color='r',
linestyle='--',
label="95\% Confidence Bound"
)
ax.legend(fontsize=14)
ax.set_xlim([0, 280])
ax.set_xlabel("Period [min]", fontsize=16)
ax.set_ylabel("Power Spectrum Density", fontsize=16)
ax.tick_params(axis='both', which='major', labelsize=14)
